4.7 Article

Molten Salt-Derived RuO2 Nanocrystals and Nanowires: Unveiling Correlations of Morphology, Microstructure, and Electrocatalytic Performance

期刊

INORGANIC CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.3c02866

关键词

-

向作者/读者索取更多资源

In this study, ruthenium oxide nanocrystals and nanowires were successfully obtained through a molten salt process. The morphology, crystal structure, and local bonding features were examined. The experimental results showed that both the nanocrystals and nanowires exhibited favorable stability and activity in an alkali medium, with the nanocrystals showing higher activity.
Ruthenium oxide (RuO2), due to its comparable binding energy with *H and cost-effectiveness against Pt, has emerged as a pivotal electrocatalyst for oxygen evolution reaction (OER). In the present study, RuO2 nanocrystals (NCs) and nanowires (NWs) were obtained by a molten salt process and the morphology, crystal structure, and local bonding features were examined by using electron microscopy and X-ray absorption spectroscopy. From the electrochemical measurement, both RuO2 NCs and NWs exhibit favorable stability and activity toward oxygen evolution reaction in an alkali medium, althought NCs exhibit higher activity, which is likely attributed to the larger surface area and the high local structural disorder. The theoretical calculation reveals that RuO2 NWs with a primary (110) orientation show a higher overpotential due to its d-band center's proximity to the Fermi level versus (101). The present work suggests that the molten salt process could be an efficient method for producing metal oxide catalysts with tailorable geometry and performances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据