4.7 Article

Antagonistic effects of Bacillus subtilis subsp subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds

期刊

MICROBIOLOGICAL RESEARCH
卷 182, 期 -, 页码 31-39

出版社

ELSEVIER GMBH
DOI: 10.1016/j.micres.2015.09.005

关键词

Macrophomina phaseolina; Bacillus subtilis subsp subtilis; B. amyloliquefaciens; Lipopeptides; UV-MALDI TOF MS; SEM

资金

  1. Consejo de Investigacion de la Universidad Nacional de Salta (CIUNSa) [P1974]
  2. National Science and Technology Promotion Agency (ANPCyT) of Argentina [PICT2011-0767]
  3. CONICET

向作者/读者索取更多资源

The antifungal effect of Bacillus subtilis subsp. subtilis PGPMori7 and Bacillus amyloliquefaciens PGPBacCA1 was evaluated against Macrophomina phaseolina (Tassi) Gold. Cell suspension (CS), cell-free supernatant (CFS) and the lipopeptide fraction (LF) of PGPMori7 and PGPBacCA1 were screened against three different M. phaseolina strains. CS exhibited the highest inhibitory effect (around 50%) when compared to those of CFS and LF, regardless of the fungal strain studied. The synthesis of lipopeptides was studied by UV-MALDI TOF. Chemical analysis of Bacillus metabolite synthesis revealed that surfactin and iturin were mainly produced in liquid medium. Potential fengycin was also co-produced when both Bacillus were cultivated in solid medium. In co-culture assays, the bacterial colony-fungal mycelium interface at the inhibition zone was evaluated by both scanning electron microscopy (SEM) and UV-MALDI TOF, the former to determine the structural changes on M. phaseolina cells and the latter to identify the main bioactive molecules involved in the inhibitory effect. PGPBacCA1 produced surfactin, iturin and fengycin in the inhibition zone while PGPMori7 only produced these metabolites within its colony and not in the narrow inhibition zone. Interestingly, SEM revealed that PGPBacCA1 induced damage in M. phaseolina sclerotia, generating a fungicidal effect as no growth was observed when normal growth conditions were reestablished. In turn, PGPMori7 inhibited the growth of the Macrophomina mycelium without fungal injury, resulting only in a fungistatic activity. From these results, it was determined that the two bacilli significantly inhibited the growth of an important phytopathogenic fungus by at least two different mechanisms: lipopeptide synthesis and competition among microorganisms. (c) 2015 Elsevier GmbH. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据