4.5 Article

Involvement of oxidative stress in bactericidal activity of 2-(2-nitrovinyl) furan against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus

期刊

MICROBIAL PATHOGENESIS
卷 91, 期 -, 页码 107-114

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.micpath.2015.11.020

关键词

2-(2-nitrovinyl)furan; Oxidative stress; Escherichia coli; Pseudomonas aeruginosa; Staphylococcus aureus; Reactive oxygen species

向作者/读者索取更多资源

The involvement of reactive oxygen species and oxidative stress in 2-(2-nitrovinyl) furan mediated bacterial cell death was investigated in Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Time kill assay resulted in significant decrease in the optical density and colony-forming unit (CFU) of E. coli, P. aeruginosa and S. aureus. The level of superoxide anion radical and nitric oxide increased significantly in concentration dependent when compared with dimethyl sulfoxide (DMSO) treated bacteria. Similar concentration dependent increase in the activity of superoxide dismutase and catalase were recorded. The non-enzymatic antioxidant glutathione decreased significantly with a concomitant increase in glutathione disulfide. The level of malondialdehyde and fragmented DNA increased significantly in the bacterial cells treated with 2-(2-nitrovinyl) furan when compared with DMSO treated cells. The CFU of E. coli, P. aeruginosa and S. aureus following exposure to 2-(2-nitrovinyl) furan increased significantly (p < 0.05) in the presence of 2,2' bipyridyl, an Fe chelator, significantly when compared with only 2-(2-nitrovinyl) furan suggesting the involvement of hydroxyl radical in the cell death. The available data from this study showed that 2-(2-nitrovinyl) furan induced oxidative stress in E. coli, P. aeruginosa and S. aureus as evident from elevated levels of superoxide anion radical nitric oxides and antioxidant enzymes. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据