4.7 Article

A Fast Soft Robotic Laser Sweeping System Using Data-Driven Modeling Approach

期刊

IEEE TRANSACTIONS ON ROBOTICS
卷 -, 期 -, 页码 -

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2023.3262118

关键词

Robot sensing systems; Sensors; Robots; Shape; Bending; Multicore processing; Soft robotics; Fiber optic shape sensing; Koopman operator; laser sweeping; soft robot modeling and control

类别

向作者/读者索取更多资源

This article presents a simple, compact two-segment soft robot for flexible laser ablation, capable of omnidirectional bending and precise, fast steering of laser collimator. The proposed soft robot modeling and control scheme based on Koopman operators is validated through experiments, demonstrating its accuracy in laser path following across various contours/patterns.
Soft robots have great potential in surgical applications due to their compliance and adaptability to their environment. However, their flexibility and nonlinearity bring challenges for precise modeling, sensing, and control, especially in constrained cavities. In this article, a simple, compact two-segment soft robot for flexible laser ablation is proposed. The proximal hydraulic-driven segment can offer omnidirectional bending so as to navigate toward lesions. The distal segment driven by tendons enables precise, fast steering of laser collimator for laser sweeping on lesion targets. The dynamics of such mechanical steering motion can be enhanced with a metal spring backbone integrated along the collimator, thus facilitating the control with certain linearity and responsiveness. A soft robot modeling and control scheme based on Koopman operators is proposed. We also design a disturbance observer so as to incorporate the controller feedback with real-time fiber optic shape sensing. Experimental validation is conducted on simulated or ex-vivo laser ablation tasks, thus evaluating our control strategies in laser path following across various contours/patterns. As a result, such a simple compact laser manipulation can perform up to 6 Hz sweeping with precision of path following errors below 1 mm. Such modeling and control scheme could also be used on an endoscopic laser ablation robot with unsymmetric mechanism driven by two tendons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据