4.8 Article

Stability-Oriented Multiobjective Control Design for Power Converters Assisted by Deep Reinforcement Learning

期刊

IEEE TRANSACTIONS ON POWER ELECTRONICS
卷 38, 期 10, 页码 12394-12400

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2023.3299979

关键词

Converter design; deep reinforcement learning (DRL); impedance-based stability analysis; power system stability

向作者/读者索取更多资源

This letter proposes a deep reinforcement learning-assisted framework for multiobjective optimization of control parameters and validates its effectiveness in a control hardware-in-the-loop converter system.
Impedance characteristics of power converters are dependent on operating conditions, posing challenges to the stability-oriented design of control systems. This is because constant control parameters, designed according to a limited number of operating conditions, may cause instability in other conditions. In this letter, a deep reinforcement learning-assisted framework is proposed to achieve multiobjective optimization of multiple control parameters. With a focus on converter stability under weak/strong grids, adaptive control parameters are generated for different power setting points, in alignment with requirements on dynamic performance. The effectiveness of the proposed framework is validated with the deployment and real-time operation of the well-trained actor (a shallowneutral network) in a control hardware-in-the-loop converter system. With adaptive control gains, system stability can be guaranteed without compromising dynamic response, despite the variation of internal power setting point or external grid strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据