4.7 Article

Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system

期刊

MICROBIAL CELL FACTORIES
卷 15, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12934-016-0594-4

关键词

Type I-E CRISPR-Cas system; TCA cycle; Escherichia coli; Poly-3-hydroxbutyrate

资金

  1. National Basic Research Program of China [2012CB725202]
  2. National Natural Science Foundation of China [31370085]
  3. National Undergraduate Training Program for Innovation and Entrepreneurship [201610422074]
  4. Shandong Science and Technology Development Plan [2015GSF121042]

向作者/读者索取更多资源

Background: Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is a recently developed powerful tool for gene regulation. In Escherichia coli, the type I CRISPR system expressed endogenously shall be easy for internal regulation without causing metabolic burden in compared with the widely used type II system, which expressed dCas9 as an additional plasmid. Results: By knocking out cas3 and activating the expression of CRISPR-associated complex for antiviral defense (Cascade), we constructed a native CRISPRi system in E. coli. Downregulation of the target gene from 6 to 82% was demonstrated using green fluorescent protein. Regulation of the citrate synthase gene (gltA) in the TCA cycle affected host metabolism. The effect of metabolic flux regulation was demonstrated by the poly-3-hydroxbutyrate (PHB) accumulation in vivo. Conclusion: By regulating native gltA in E. coli using an engineered endogenous type I-E CRISPR system, we redirected metabolic flux from the central metabolic pathway to the PHB synthesis pathway. This study demonstrated that the endogenous type I-E CRISPR-Cas system is an easy and effective method for regulating internal metabolic pathways, which is useful for product synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据