4.7 Article

Heterogeneous Graph Neural Network With Multi-View Representation Learning

期刊

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TKDE.2022.3224193

关键词

Heterogeneous graphs; graph neural networks; graph embedding

向作者/读者索取更多资源

Graph neural networks have been widely used for heterogeneous graph embedding due to their ability to effectively encode rich information. However, previous methods often fail to fully utilize the heterogeneity and semantics in complex local structures. To address this issue, the authors propose MV-HetGNN, which comprehensively learns complex heterogeneity and semantics to generate versatile node representations.
In recent years, graph neural networks (GNNs)-based methods have been widely adopted for heterogeneous graph (HG) embedding, due to their power in effectively encoding rich information from a HG into the low-dimensional node embeddings. However, previous works usually easily fail to fully leverage the inherent heterogeneity and rich semantics contained in the complex local structures of HGs. On the one hand, most of the existing methods either inadequately model the local structure under specific semantics, or neglect the heterogeneity when aggregating information from the local structure. On the other hand, representations from multiple semantics are not comprehensively integrated to obtain node embeddings with versatility. To address the problem, we propose a Heterogeneous Graph Neural Network for HG embedding within a Multi-View representation learning framework (named MV-HetGNN), which consists of a view-specific ego graph encoder and auto multi-view fusion layer. MV-HetGNN thoroughly learns complex heterogeneity and semantics in the local structure to generate comprehensive and versatile node representations for HGs. Extensive experiments on three real-world HG datasets demonstrate the significant superiority of our proposed MV-HetGNN compared to the state-of-the-art baselines in various downstream tasks, e.g., node classification, node clustering, and link prediction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据