4.7 Article

Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E-coli de novo vanillin biosynthesis pathway

期刊

MICROBIAL CELL FACTORIES
卷 15, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s12934-016-0459-x

关键词

E. coli; Vanillin; Methylation; S-adenosylmethionine; SAM; AdoMet; Methionine; Deregulation; Metabolic engineering

资金

  1. National Science Foundation through Synthetic Biology Engineering Research Center (SynBERC) [EEC-0540879]
  2. National Science Foundation through Graduate Research Fellowship

向作者/读者索取更多资源

Background: Vanillin is an industrially valuable molecule that can be produced from simple carbon sources in engineered microorganisms such as Saccharomyces cerevisiae and Escherichia coli. In E. coli, de novo production of vanillin was demonstrated previously as a proof of concept. In this study, a series of data-driven experiments were performed in order to better understand limitations associated with biosynthesis of vanillate, which is the immediate precursor to vanillin. Results: Time-course experiments monitoring production of heterologous metabolites in the E. coli de novo vanillin pathway revealed a bottleneck in conversion of protocatechuate to vanillate. Perturbations in central metabolism intended to increase flux into the heterologous pathway increased average vanillate titers from 132 to 205 mg/L, but protocatechuate remained the dominant heterologous product on a molar basis. SDS-PAGE, in vitro activity measurements, and l-methionine supplementation experiments suggested that the decline in conversion rate was influenced more by limited availability of the co-substrate S-adenosyl-l-methionine (AdoMet or SAM) than by loss of activity of the heterologous O-methyltransferase. The combination of metJ deletion and overexpression of feedback-resistant variants of metA and cysE, which encode enzymes involved in SAM biosynthesis, increased average de novo vanillate titers by an additional 33 % (from 205 to 272 mg/L). An orthogonal strategy intended to improve SAM regeneration through overexpression of native mtn and luxS genes resulted in a 25 % increase in average de novo vanillate titers (from 205 to 256 mg/L). Vanillate production improved further upon supplementation with methionine (as high as 419 +/- 58 mg/L), suggesting potential for additional enhancement by increasing SAM availability. Conclusions: Results from this study demonstrate context dependency of engineered pathways and highlight the limited methylation capacity of E. coli. Unlike in previous efforts to improve SAM or methionine biosynthesis, we pursued two orthogonal strategies that are each aimed at deregulating multiple reactions. Our results increase the working knowledge of SAM biosynthesis engineering and provide a framework for improving titers of metabolic products dependent upon methylation reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据