4.6 Article

Drone Stations-Aided Beyond-Battery-Lifetime Flight Planning for Parcel Delivery

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASE.2022.3213254

关键词

Drones; Batteries; Planning; Heuristic algorithms; Logistics; Costs; Public transportation; Drones; parcel delivery; last-mile delivery; battery recharging; drone stations; path planning; flight planning

资金

  1. Research Institute for Sports Science and Technology [P0043566, P0040253]

向作者/读者索取更多资源

This paper explores the use of drones for last-mile parcel delivery, focusing on flight planning to minimize travel time and proposing different scenarios for recharging the drones at drone stations. The study presents a framework for autonomous long-distance delivery using drones and offers a dynamic solution to address resource limitations at drone stations. The presented approach effectively finds the optimal flight plan for drones.
This paper considers using drones to conduct the last-mile parcel delivery. To enable the beyond-battery-lifetime flight, drone stations are considered to replace or recharge the battery for drones. We focus on the flight planning problem with the goal of minimizing the total travel time from the depot to a customer, a key indicator of the quality of service. We investigate four typical ways for the drone to get extra energy at drone stations: 1) replacing the battery with a fresh one, 2) recharging the battery to the full capacity, 3) recharging the battery to the optimal level, and 4) recharging the battery to the optimal level accounting for the availability of drone stations (i.e., whether a drone station is occupied by other drones). While the first two scenarios can be formulated following the framework of integer linear programming, the last two scenarios turn into mixed-integer nonlinear programming problems. To address the later problems, we present a framework in which discretized state graphs are constructed first and then the optimal paths are found by graph searching algorithms. We propose a dynamic version of Dijkstra's algorithm to deal with the unavailability issue of drone stations. The algorithm can quickly find the optimal flight path for a drone, and extensive computer-based experimental results have been presented to demonstrate the effectiveness of the proposed method. Note to Practitioners-Multi-rotary unmanned aerial vehicles (UAVs), also known as drones, have been regarded as a promising means to reshape future logistics. To save human labour and reduce cost, many giant logistics companies have been dedicated to developing various drones to deliver light and small parcels during the past decade. However, due to the limitation of payload, the battery capacity is constrained, which prevents drones from long-distance flights. Practitioners have tried the drone-vehicle collaboration method, but this still requires human labour to participate. In this paper, we present a framework where drones autonomously conduct long-distance delivery with the assistance of drone stations. It is worth pointing out that such a framework is not to replace the ground delivery method but to serve as an alternative to the ground counterpart for small and light parcels. A particular focus is on the flight planning from the depot to a destination, which includes not only a sequence of drone stations to stop at but also the corresponding rest time to recharge the battery. Several typical scenarios about battery recharging are discussed, and a dynamic version of Dijkstra's algorithm is presented to deal with the challenging case where drone station resources are limited. The presented approach is able to find out the optimal flight plan quickly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据