4.5 Article

Boron adsorption in clay minerals: Implications for martian groundwater chemistry and boron on Mars

期刊

ICARUS
卷 401, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2023.115599

关键词

Boron; Adsorption; Phyllosilicates; Martian geochemistry; Diagenesis

向作者/读者索取更多资源

Boron has been detected on Mars in calcium-sulfate veins found within clay mineral rich rocks on Mars by the Mars Science Laboratory (MSL) Curiosity rover using Laser Induced Breakdown Spectroscopy (LIBS) analysis. The discovery of boron on Mars in proximity to phyllosilicatebearing bedrock may have strong implications for potential past prebiotic conditions on Mars.
Boron has been detected on Mars in calcium-sulfate veins found within clay mineral rich rocks on Mars by the Mars Science Laboratory (MSL) Curiosity rover using Laser Induced Breakdown Spectroscopy (LIBS) analysis. Borates play a vital role in stabilizing ribose on Earth and has been suggested as a key requirement for life. Borate ions readily adsorb to phyllosilicate clay minerals. The discovery of boron on Mars in proximity to phyllosilicatebearing bedrock may have strong implications for potential past prebiotic conditions on Mars. In this study we generated a suite of clay minerals with adsorbed borate, including both typical terrestrial clay minerals (montmorillonite) and Mars-analog clay minerals (nontronite, saponite, griffithite), to understand controls on borate adsorption and to analyze with LIBS to compare with MSL data. Clay minerals were subjected to mineralogical and chemical analysis before and after adsorption. Adsorption analysis revealed that the Mars analog clay minerals adsorbed less boron than terrestrial counterparts, but within comparable amounts to those detected on Mars and in meteorites. Post-adsorption analysis by X-ray diffraction (XRD) revealed slight changes in the interlayer spacing of many of the clay minerals. Based on the adsorption analysis of the Mars-analog clay minerals, phyllosilicate-bearing bedrock in Gale crater may contain up to 90-110 ppm B. A series of borateenriched samples were created for analysis of LIBS spectra from ChemCam on the Curiosity rover and SuperCam on the Perseverance Rover. The results of this study may provide insight into martian groundwater geochemistry processes and the mobility of a key molecule connected with life.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据