4.7 Article

A practical model-based segmentation approach for improved activation detection in single-subject functional magnetic resonance imaging studies

期刊

HUMAN BRAIN MAPPING
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/hbm.26425

关键词

alternating partial expectation conditional maximization algorithm; cluster thresholding; expectation gathering maximization algorithm; false discovery rate; Flanker task; MixfMRI; persistent vegetative state; probabilistic threshold-free cluster enhancement; spatial mixture model; traumatic brain injury

向作者/读者索取更多资源

This study develops a model-based approach, implemented in the R package MixfMRI, to accurately detect activation in low-signal and single-subject functional magnetic resonance imaging (fMRI). The approach considers the spatial localization of activated voxels and can also distinguish voxels and regions with different activation intensities. Simulation experiments and real-world datasets demonstrate the effectiveness of the proposed approach. The study illustrates the potential of using fMRI as a clinical tool for improved treatment and therapy for patients in persistent vegetative state (PVS).
Functional magnetic resonance imaging (fMRI) maps cerebral activation in response to stimuli but this activation is often difficult to detect, especially in low-signal contexts and single-subject studies. Accurate activation detection can be guided by the fact that very few voxels are, in reality, truly activated and that these voxels are spatially localized, but it is challenging to incorporate both these facts. We address these twin challenges to single-subject and low-signal fMRI by developing a computationally feasible and methodologically sound model-based approach, implemented in the R package MixfMRI, that bounds the a priori expected proportion of activated voxels while also incorporating spatial context. An added benefit of our methodology is the ability to distinguish voxels and regions having different intensities of activation. Our suggested approach is evaluated in realistic two- and three-dimensional simulation experiments as well as on multiple real-world datasets. Finally, the value of our suggested approach in low-signal and single-subject fMRI studies is illustrated on a sports imagination experiment that is often used to detect awareness and improve treatment in patients in persistent vegetative state (PVS). Our ability to reliably distinguish activation in this experiment potentially opens the door to the adoption of fMRI as a clinical tool for the improved treatment and therapy of PVS survivors and other patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据