4.8 Article

Climate-driven tree growth and mortality in the Black Forest, Germany-Long-term observations

期刊

GLOBAL CHANGE BIOLOGY
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1111/gcb.16897

关键词

bark beetles; climate change; climatic water balance; drought; forest decline; tree growth; tree mortality; warming

向作者/读者索取更多资源

Climate-driven tree mortality and growth decline in the Black Forest mountain range in Germany is described based on a 68-year data series. The study identifies drought and heat as the main drivers of tree mortality and growth decline.
Episodic tree mortality can be caused by various reasons. This study describes climate-driven tree mortality and tree growth in the Black Forest mountain range in Germany. It is based on a 68-year consistent data series describing the annual mortality of all trees growing in a forest area of almost 250 thousand ha. The study excludes mortality caused by storm, snow and ice, and fire. The sequence of the remaining mortality, the so-called desiccated trees, is analyzed and compared with the sequence of the climatic water balance during the growing season and the annual radial growth of Norway spruce in the Black Forest. The annual radial growth series covers 121 years and the climatic water balance series 140 years. These unique time series enable a quantitative assessment of multidecadal drought and heat impacts on growth and mortality of forest trees on a regional spatial scale. Data compiled here suggest that the mortality of desiccated trees in the Black Forest during the last 68 years is driven by the climatic water balance. Decreasing climatic water balance coincided with an increase in tree mortality and growth decline. Consecutive hot and dry summers enhance mortality and growth decline as a consequence of drought legacies lasting several years. The sensitivity of tree growth and mortality to changes in the climatic water balance increases with the decreasing trend of the climatic water balance. The findings identify the climatic water balance as the main driver of mortality and growth variation during the 68-year observation period on a landscape-scale including a variety of different sites. They suggest that bark beetle population dynamics modify mortality rates. They as well provide evidence that the mortality during the last 140 years never was as high as in the most recent years.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据