4.7 Article

An improved deep learning network for AOD retrieving from remote sensing imagery focusing on sub-pixel cloud

期刊

GISCIENCE & REMOTE SENSING
卷 60, 期 1, 页码 -

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/15481603.2023.2262836

关键词

Aerosol optical depth; sub-pixel cloud; deep learning; channel attention; CNN

向作者/读者索取更多资源

This study proposes an improved deep learning network called SPAODnet for retrieving AOD from satellite imagery, focusing on sub-pixel clouds. By incorporating a spatial adaptive bilateral filter, a channel attention mechanism, and a composite loss function, the SPAODnet significantly enhances the accuracy, spatial resolution, and coverage of AOD, particularly in the presence of sub-pixel clouds and cloud shadows.
Following the success of MODIS, several widely used algorithms have been developed for different satellite sensors to provide global aerosol optical depth (AOD) products. Despite the progress made in improving the accuracy of satellite-derived AOD products, the presence of sub-pixel clouds and the corresponding cloud shadows still significantly degrade AOD products. This is due to the difficulty in identifying sub-pixel clouds, as they are hardly identified, which inevitably leads to the overestimation of AOD. To overcome these conundrums, we proposed an improved deep learning network for retrieving AOD from remote sensing imagery focusing on sub-pixel clouds especially and we call it the Sub-Pixel AOD network (SPAODnet). Two specific improvements considering sub-pixel clouds have been made; a spatial adaptive bilateral filter is applied to top-of-atmosphere (TOA) reflectance images for removing the noise induced by sub-pixel clouds and the corresponding shadows at the first place and channel attention mechanism is added into the convolutional neural network to further emphasize the relationship between the uncontaminated pixels and the ground measured AOD from AERONET sites. In addition, a compositive loss function, Huber loss, is used to further improve the accuracy of retrieved AOD. The SPAODnet model is trained by using ten AERONET sites within Beijing-Tianjin-Hebei (BTH) region in China, along with their corresponding MODIS images from 2011 to 2020; Subsequently, the trained network is applied over the whole BTH region and the AOD images over the BTH region from 2011 similar to 2020 are retrieved. Based on a comprehensive validation with ground measurements, the MODIS products, and the AOD retrieved from the other neural network, the proposed network does significantly improve the overall accuracy, the spatial resolution, and the spatial coverage of the AOD, especially for cases with sub-pixel clouds and cloud shadows.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据