4.6 Article

Wave runup and inundation dynamics on a perched beach

期刊

GEOMORPHOLOGY
卷 435, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.geomorph.2023.108751

关键词

Wave runup; Inundation; Perched beach; Shore platform

向作者/读者索取更多资源

This study aims to provide a method for quantifying the relationship between beach slope and wave runup and inundation, as well as the impact of different hydrodynamic mechanisms on runup under different beach states. Through an 8-month field study on a beach in southwestern Australia, an approximately linear relationship between inundation and runup was identified by considering beach slope. It was found that swash dominated runup in the infragravity band when the beach was accreted, while setup dominated runup when the beach was exposed.
Sandy beaches perched over rocky shore platforms are common globally, yet their mixed sand and rocky morphology present challenges for quantifying and predicting wave runup and inundation. For typical linear beach profiles, simple relationships can be made between vertical runup and horizontal inundation based on beach slope. However, as topographic irregularities increase, substantial deviations from these relationships can occur. Shore platforms often experience a range of beach states, from full sand coverage (accreted) to complete shore platform erosion (exposed). As a result, existing methods for quantifying runup and inundation on purely sandy beaches are generally not directly applicable to these coastlines. To advance our understanding of runup and inundation on perched beaches, the aim of this work is three-fold: (1) to provide a method for quantifying beach slope and runup across a range of perched beach profiles, (2) to assess the relationship between vertical runup and horizontal inundation observations, and (3) to understand how different hydrodynamic mechanisms (i.e., setup, swash) contribute to runup during different beach states. To achieve this, we conducted an 8-month field study along a perched beach in southwestern Australia that experiences large seasonal variations in beach state and wave climate. A method was developed to measure runup and beach slope when only the topography shoreward of the shore platform edge was known. Using this method, an approximately linear relationship between inundation and runup was identified by incorporating beach slope. Our observations suggest that the components that dominate runup on perched beaches were primarily dependent on beach state (i.e., accreted versus exposed). Runup was dominated by swash in the infragravity band when in an accreted beach state, and setup when in an exposed beach state. These results aid our understanding of coastal processes on perched beaches, while providing new methods applicable to a range of perched beach profiles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据