4.7 Article

Host-rock and caprock wettability during hydrogen drainage: Implications of hydrogen subsurface storage

期刊

FUEL
卷 351, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2023.129048

关键词

Hydrogen storage; Rock wettability; Carbonate rock; Contact angle; Different lithologies; Captive bubble method

向作者/读者索取更多资源

Underground hydrogen storage is essential for the industrial-scale actualization of global decarbonization objectives. This study investigated the wettability of carbonate-water-H2 systems for various rock types and found that all rocks remained strongly water-wet under all experimental conditions. In addition, the contact angles did not significantly change with temperature and pressure. The study suggests that the assumption of strongly water-wet conditions may not over-predict the wettability of carbonates storage rocks and caprocks during underground hydrogen storage.
Underground hydrogen storage (UHS) is an integral part of H2 economy value chain, essential for industrial-scale actualization of global decarbonization objectives. UHS in depleted hydrocarbon reservoirs is considered a safer and promising storage technique due to presence of large porous formation and impermeable seal, but its effectiveness depends on precise estimation of rock wettability, a crucial parameter in reservoir characterization, which controls pore-scale gas distribution, H2 containment safety and withdrawal efficiency. Several recent studies have provided contact angles data for host rock-water-H2 (quartz and sandstone) and caprock-water-H2 (mica and shale) measured through sessile drop method. However, the contact angle datasets for carbonate rockwater-H2 measured via captive bubble method, which can reflect the wettability of the rock during imbibition and drainage are largely unknown. The present work characterized the wettability of carbonate-water-H2 systems for various rock types, prepared from five different lithologies with different mineral assemblages. The contact angle & theta; was measured using the captive bubble method at two different temperatures of 303 K and 348 K, and three different pressures (3.44, 10.34, and 17.23 MPa). Experimental results showed that all rocks remained intrinsically strongly water-wet (& theta; ranged between 17 degrees - 30 degrees) at all experimental conditions. Furthermore, no significant change in contact angles occurred with changing temperature and pressure. For instance, at 17.23 MPa, contact angle of H2/brine on anhydrite (S-4) rock were measured as 19 degrees and 20 degrees at 303 K and 348 K respectively, suggesting that H2 remains the non-wetting phase with increasing storage depth and at warmer reservoirs. The study suggests that the pore-scale flow and fluid connectivity of H2 may not be influenced by changing wettability in pure storage rocks/caprocks. Thus, the wettability of carbonates storage rocks and caprocks may not be over-predicted by assuming strongly water-wet conditions for the non-contaminated rock surfaces during UHS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据