4.7 Review

Soot formation in high-pressure combustion: Status and challenges

期刊

FUEL
卷 345, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2023.128236

关键词

Combustion; High-pressure environments; Soot formation mechanism; Diagnostic techniques

向作者/读者索取更多资源

The combustion of hydrocarbon fuels lacks accurate reaction mechanisms, especially in high-pressure environments. This review provides a comprehensive overview of cutting-edge research on soot formation in high-pressure combustion, analyzing existing research issues, discussing soot formation mechanisms and diagnostic techniques, and identifying trends in fuel combustion under high pressure. The review also highlights the challenges and future directions of high-pressure combustion research.
Combustion of hydrocarbon fuels lacks accurate and detailed reaction mechanisms, and the majority of flame research is focused on atmospheric conditions, with little progress made in high-pressure environments. How-ever, the high-pressure environment dominates the actual fuel combustion, such as diesel engines, automobile engines, and aircraft engines. Thus, understanding and mastering the combustion characteristics and soot for-mation mechanisms in high-pressure environments can significantly improve energy efficiency and reduce pollutant emissions, contributing to the goal of carbon peaking and carbon neutralization. This review presents a comprehensive overview of cutting-edge soot research in high-pressure combustion conditions, while also analyzing and summarizing the existing research issues. Specifically, the review discusses the soot formation mechanism in laminar diffusion flames and related diagnostic techniques. The analysis then delves deeper into the study of soot in high-pressure environments, categorizing and introducing various fuels. The analysis reveals that as pressure increases, soot particle size, concentration, and flame temperature all increase. Furthermore, there exists a certain relationship between the soot volume fraction (fv) and the pressure (p), i.e.,fv = Cpn. Recent simulation studies on diffusion flame under high pressure are discussed, along with various factors related to flame stability and the soot formation path. Finally, the challenges in the current high-pressure combustion research are identified, and an outlook for the future is put forward.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据