4.7 Article

Unveiling metabotype clustering in resveratrol, daidzein, and ellagic acid metabolism: Prevalence, associated gut microbiomes, and their distinctive microbial networks

期刊

FOOD RESEARCH INTERNATIONAL
卷 173, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.foodres.2023.113470

关键词

Equol; Urolithin; Lunularin; Metabotyping; Gut microbiota; Interindividual variability; Personalized nutrition; Polyphenols

向作者/读者索取更多资源

This study analyzed the gut microbiota and polyphenol metabolism in adult humans and identified different clusters of gut microbiota metabotypes. The study found that a nutraceutical had different effects on the composition and function of gut microbiota, which provides a basis for personalized gut microbiota-targeted therapy.
The gut microbiota (GM) produces different polyphenol-derived metabolites, yielding high interindividual variability and hampering consistent health effects. GM metabotypes associated with ellagic acid (urolithin metabotypes A (UMA), B (UMB), and 0 (UM0)), resveratrol (lunularin -producers (LP) and non-producers (LNP)), and daidzein (equol-producers (EP) and non-producers (ENP)) are known. However, individual polyphenolrelated metabotypes do not occur individually. In contrast, different combinations coexist (i.e., metabotype clusters, MCs). We report here for the first time these MCs, their distribution, and their associated GM in adult humans (n = 127) after consuming for 7 days a nutraceutical (pomegranate, Polygonum cuspidatum, and red clover extracts) containing ellagitannins + ellagic acid, resveratrol, and isoflavones. Urine metabolites (UHPLCQTOF-MS) and fecal microbiota (16S rRNA sequencing) were analyzed. Ten MCs were identified: LP + UMB + ENP (22.7%), LP + UMA + ENP (21.3%), LP + UMA + EP (16.7%), LP + UMB + EP (16%), LNP + UMA + ENP (11.3%), LNP + UMB + ENP (5.3%), LNP + UMA + EP (3.3%), LNP + UMB + EP (2%), LNP + UM0 + EP (0.7%), and LNP + UM0 + ENP (0.7%). Sex, BMI, and age did not affect the distribution of metabotypes or MCs. Multivariate analysis (MaAslin2) revealed genera differentially present in individual metabotypes and MCs. Network analysis (MENA) showed the taxa acting as module hubs and connectors. Compositional and functional profiling, alpha and beta diversities, topological network features, and GM modulation by the nutraceutical differed depending on whether the entire cohort or each MC was considered. The nutraceutical did not change the composition of LP + UMA + EP (the most robust GM with the most associated functions) but increased its network connectors. This pioneering approach, joining GM's compositional, functional, and network features in polyphenol metabolism, paves the way for identifying personalized GM-targeted strategies to improve polyphenol health benefits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据