4.7 Article

Comparative genomic analysis reveals the potential transmission of Vibrio parahaemolyticus from freshwater food to humans

期刊

FOOD MICROBIOLOGY
卷 113, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fm.2023.104277

关键词

Vibrio parahaemolyticus; Virulence; Multilocus sequence typing; Genetic diversity; Transmission pattern

向作者/读者索取更多资源

This study investigated the prevalence and characteristics of Vibrio parahaemolyticus in freshwater food and found that it was more common in freshwater food than in seafood. The isolates from freshwater food showed higher motility and lower biofilm-forming capacity compared to seafood isolates. Multilocus sequence typing revealed that the same sequence type was found in freshwater food and clinical samples, indicating a potential link between V. parahaemolyticus-contaminated freshwater food and clinical cases.
Vibrio parahaemolyticus is an increasingly important foodborne pathogen that cause acute gastroenteritis in humans. However, the prevalence and transmission of this pathogen in freshwater food remains unclear. This study aimed to determine the molecular characteristics and genetic relatedness of V. parahaemolyticus isolates obtained from freshwater food, seafood, environmental, and clinical samples. A total of 138 (46.6%) isolates were detected from 296 food and environmental samples, and 68 clinical isolates from patients. Notably, V. parahaemolyticus was more prevalent in freshwater food (56.7%, 85/150) than in seafood (38.8%, 49/137). Virulence phenotype analyses revealed that the high motility of isolates from freshwater food (40.0%) and clinical isolates (42.0%) was higher than that of isolates from seafood (12.2%), whereas the biofilm-forming capacity of freshwater food isolates (9.4%) was lower than that of seafood (22.4%) and clinical isolates (15.9%). Virulence genes analysis showed that 46.4% of the clinical isolates contained the tdh gene encoding thermostable direct hemolysin (TDH) and only two freshwater food isolates contained the trh gene encoding TDH-related hemolysin (TRH). Multilocus sequence typing (MLST) analysis divided the 206 isolates into 105 sequence types (STs), including 56 (53.3%) novel STs. ST2583, ST469, and ST453 have been isolated from freshwater food and clinical samples. Whole-genome sequence (WGS) analyses revealed that the 206 isolates were divided into five clusters. Cluster II contained isolates from freshwater food and clinical samples, whereas the other clusters contained isolates from seafood, freshwater food, and clinical samples. In addition, we observed that ST2516 had the same virulence pattern, with a close phylogenetic relationship to ST3. The increased prevalence and adaption of V. parahaemolyticus in freshwater food is a potential cause of clinical cases closely related to the consumption of V. parahaemolyticus contaminated freshwater food.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据