4.7 Article

ACE inhibitory peptides from enzymatic hydrolysate of fermented black sesame seed: Random forest-based optimization, screening, and molecular docking analysis

期刊

FOOD CHEMISTRY
卷 437, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2023.137921

关键词

Black sesame seeds; RF-PSO optimization; Peptides; Angiotensin-I-converting enzyme; Inhibitory mechanism

向作者/读者索取更多资源

This study successfully improved the ACE inhibitory activity of black sesame seeds by fermenting them with Lactobacillus Plantarum NCU116 and hydrolyzing them using acid protease. The RF-PSO model was used to predict the ACE inhibitory activity during the hydrolysis process. Eight peptides with ACE inhibitory activity were identified from fermented black sesame seed hydrolysates after separation and screening.
In this study, black sesame seeds were fermented by Lactobacillus Plantarum NCU116 and then hydrolyzed using acid protease to improve Angiotensin-I-converting enzyme (ACE) inhibitory activity. The random forest-particle swarm optimization (RF-PSO) model was applied to predict the ACE inhibitory activity during the hydrolysis process based on the experimental data. After separating by adsorption chromatography, gel filtration chromatography, and reversed phased-high performance liquid chromatography and then screening in silico method, eight peptides were identified from fermented black sesame seed hydrolysates as ITAPHW, SLPNYHPSPR, QYLPR, IRPNGL, YHNAPIL, LSYPR, GFAGDDAPRA, and LDPNPRSF with IC50 values of 51.69 mu M, 146.67 mu M, 655.02 mu M, 752.60 mu M, 1.02 mM, 2.01 mM, 1.97 mM, and 3.43 mM, respectively. ITAPHW and SLPNYHPSPR exhibited high antioxidant activity and inhibited the ACE activity in a non-competitive pattern. Molecular docking revealed that the strong ACE inhibition of ITAPHW and SLPNYHPSPR is probably attributed to the interaction with Zn2+ of ACE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据