4.7 Article

Effects of light and circadian clock on the antiviral immune response in zebrafish

期刊

FISH & SHELLFISH IMMUNOLOGY
卷 140, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fsi.2023.108979

关键词

Circadian rhythm; Light conditions; Clock genes; Viral infection; Immune response; Zebrafish

向作者/读者索取更多资源

This study aimed to investigate the effects of light and the timing of infection on the antiviral immune response in zebrafish. The findings demonstrated that light significantly affects the immune response and the functioning of the molecular clock mechanism during viral infection. The study suggests that the zebrafish antiviral response to infection is regulated by both light and the circadian clock.
The circadian clock mechanism, which is evolutionarily conserved across various organisms, plays a crucial role in synchronizing physiological responses to external conditions, primarily in response to light availability. By maintaining homeostasis of biological processes and behavior, the circadian clock serves as a key regulator. This biological mechanism also coordinates diurnal oscillations of the immune response during infections. However there is limited information available regarding the influence of circadian oscillation on immune regulation, especially in lower vertebrates like teleost fish. Therefore, the present study aimed to investigate the effects of light and the timing of infection induction on the antiviral immune response in zebrafish. To explore the relationship between the timing of infection and the response activated by viral pathogens, we used a zebrafish model infected with tilapia lake virus (TiLV). Our findings demonstrated that light availability significantly affects the antiviral immune response and the functioning of the molecular clock mechanism during TiLV infection. This is evident through alterations in the expression of major core clock genes and the regulation of TiLV replication and type I IFN pathway genes in the kidney of fish maintained under LD (light-dark) conditions compared to constant darkness (DD) conditions. Moreover, infection induced during the light phase of the LD cycle, in contrast to nocturnal infection, also exhibited similar effects on the expression of genes associated with the antiviral response. This study indicates a more effective mechanism of the zebrafish antiviral response during light exposure, which inherently involves modification of the expression of key components of the molecular circadian clock. It suggests that the zebrafish antiviral response to infection is regulated by both light and the circadian clock.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据