4.6 Article

Numerical simulation of cold-sprayed hydroxyapatite coating on 316L stainless steel

期刊

出版社

ELSEVIER
DOI: 10.1016/j.finel.2023.104020

关键词

Cold spray; Ceramic coatings; Coupled Eulerian Lagrangian (CEL); Smoothed Particle Hydrodynamics (SPH); Modelling; Mechanical interlocking; Bonding

向作者/读者索取更多资源

This study numerically investigated the deposition behavior of cold-sprayed hydroxyapatite (HA) coatings on a stainless steel substrate. The results showed that particle velocity and mechanical interlocking played an important role in bonding and retaining the HA coatings.
This study numerically investigates the deposition behavior of cold-sprayed hydroxyapatite (HA) coatings on a 316L stainless steel substrate. The velocity of HA particles sprayed using a de Laval nozzle was estimated using the discrete phase mode (DPM) model in FLUENT. Particle retention was subsequently analyzed using the Coupled Eulerian Lagrangian (CEL) and Smoothed Particle Hydrodynamics (SPH) models. The critical or threshold particle velocity was determined to be 577 m/s. Higher particle retentions were observed for impacted velocities closer to this threshold. Various morphologies of the splat were observed depending on the impact velocity, ranging from cap-shaped to ring-like structures. At impact velocities exceeding 677 m/s, the central part of the splat detached due to high spring back force, leaving behind ring-like particle remnants on the substrate. Moreover, beyond this velocity, stripes surrounding the splat diameter and grooves around the cap were observed due to material fragmentation. The study emphasizes the significant role of particle velocity and mechanical interlocking in bonding and retaining HA coatings on the metal substrate, distinct from adiabatic shear instability prevalent in metal-on-metal coatings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据