4.7 Article

An integrated system to significant wave height prediction: Combining feature engineering, multi-criteria decision making, and hybrid kernel density estimation

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 241, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2023.122351

关键词

Significant wave height prediction; Combined prediction system; Multi-objective optimization; Uncertainty analysis; Hybrid kernel density estimation

向作者/读者索取更多资源

This study introduces a comprehensive significant wave height combined prediction system, which utilizes outlier detection, sophisticated feature engineering, multi-criteria decision-based model selection, multi-objective homogeneous nuclear molecular optimization, and hybrid kernel density estimation to achieve accurate point and interval predictions of significant wave height.
Accurate prediction of significant wave height is paramount for the effective design, operation, and maintenance of wave energy converters. However, current research falls short in achieving precise and stable point predictions, along with comprehensive uncertainty analysis of significant wave height. To address this gap, this study presents a comprehensive significant wave height combined prediction system. This integrated system encompasses outlier detection utilizing Autoencoders, sophisticated feature engineering, a multi-criteria decision-based model selection methodology, a multi-objective homogeneous nuclear molecular optimization algorithm, and a hybrid kernel density estimation technique. To tackle the critical issue of model selection within ensemble prediction, we introduce a multi-criteria compromise solution ranking algorithm known as VIKOR for the selection of sub-models. Additionally, a novel multi-objective homogeneous nuclear molecular optimization algorithm is proposed, which incorporates joint opposing selection and an elite retention strategy to effectively manage multiple objectives simultaneously, yielding Pareto optimal solutions for combining weights. Furthermore, a hybrid kernel density estimation approach is developed, surpassing previous methods reliant on a single kernel function and fixed bandwidth, thereby achieving a more precise fit to the distribution of wave height data. The effectiveness of the proposed model is rigorously evaluated using wave height datasets from three distinct locations. The experimental results convincingly demonstrate that the significant wave height combined prediction system outperforms existing solutions, excelling in both point and interval predictions of significant wave height.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据