4.7 Article

221S-1a inhibits endothelial proliferation in pathological angiogenesis through ERK/c-Myc signaling

期刊

EUROPEAN JOURNAL OF PHARMACOLOGY
卷 952, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ejphar.2023.175805

关键词

221S-1a; Pathological angiogenesis; ERK1; 2; Cell cycle arrest; c-Myc

向作者/读者索取更多资源

221S-1a, a novel synthetic compound, has antiangiogenic properties by blocking the ERK1/2/c-Myc pathway, thus reducing tumor and OIR retinal angiogenesis.
Pathological angiogenesis plays a major role in many disease processes, including cancer and diabetic retinopathy. Antiangiogenic therapy is a potential management for pathologic angiogenesis. The novel synthetic compound 221S-1a, derived from captopril, tanshinol and borneol, may have antiangiogenic properties. On the basis of MS, NMR and HPLC analysis, the structure of 221S-1a was identified. The cellular uptake and metabolism of this compound was also observed. Next, the antiangiogenic properties of 221S-1a were evaluated in tumor-xenograft and OIR models in vivo. The inhibitory properties of 221S-1a on endothelial cell proliferation, migration, tube formation and sprouting were detected in vitro. Furthermore, 221S-1a induced G1/S phase arrest was detected by PI staining flow cytometry analysis and Cyclin D, Cyclin E expression. 221S-1a inhibited ERK1/2 activation and nuclear translocation, in addition to downregulation of c-Myc, a transcription factor that regulates cell cycle progression. Molecular docking indicated the interaction of 221S-1a with the ATP-binding site of ERK2, leading to the inhibition of ERK2 phosphorylation and a concomitant inhibition of ERK1 phosphorylation. In conclusion, 221S-1a inhibited the G1/S phase transition by blocking the ERK1/2/c-Myc pathway to reduce tumor and OIR retinal angiogenesis. These novel findings suggest that 221S-1a is a potential pharmacologic candidate for treating pathological angiogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据