4.4 Article

Helping networks to get synchronized: Effect of external stimulation

期刊

EPL
卷 143, 期 3, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1209/0295-5075/aceb1a

关键词

-

向作者/读者索取更多资源

This paper investigates the complete synchronizability of coupled periodically forced chaotic systems using the master stability function method. Three classic chaotic systems are employed for this study, and numerical simulations supporting the findings are reported. The results suggest that chaotic forced systems tend to synchronize at weaker couplings than the autonomous versions with increased stimulation, while high-frequency stimulation is completely ineffective. The required forcing amplitude also depends on the system's attractor size.
- The attempts to evaluate the synchronizability of chaotic systems have shown that additive periodic forcing, as a relevant source of stimuli, significantly impacts multiple forms of synchrony. This paper investigates the complete synchronizability of coupled periodically forced chaotic systems using the master stability function method. Three classic chaotic systems, Lorenz, Chen's, and Hindmarsh-Rose models are employed for this study. The numerical simulations supporting master stability function findings are also reported. The impacts of forcing amplitude and frequency on the critical value of coupling strength at which synchronization occurs are determined. Evidence implies that, as the stimulation is amplified, the chaotic forced systems tend to synchronize at weaker couplings than the autonomous versions. In contrast, high-frequency stimulation is entirely ineffective. The required forcing amplitude is also relative to the system's attractor size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据