4.7 Article

Assessing the methane mitigation potential of innovative management in US rice production

期刊

ENVIRONMENTAL RESEARCH LETTERS
卷 18, 期 12, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1748-9326/ad0925

关键词

methane; rice; alternate wetting and drying; mitigation potential

向作者/读者索取更多资源

Rice, an important crop globally, has significant methane emissions. To understand the impact of sustainable management on reducing methane emissions, more information is needed. A regional methodology was applied to estimate methane emissions in different rice growing regions in the US, and it was found that introducing aeration events during irrigation can significantly reduce methane emissions.
Rice is an important global crop while also contributing significant anthropogenic methane (CH4) emissions. To support the future of rice production, more information is needed on the impacts of sustainability-driven management used to grow rice with lower associated methane emissions. Recent support for the impacts of different growing practices in the US has prompted the application of a regional methodology (Tier 2) to estimate methane emissions in different rice growing regions. The methodology estimates rice methane emissions from the US Mid-South (MdS) and California (Cal) using region-specific scaling factors applied to a region-specific baseline flux. In our study, we leverage land cover data and soil clay content to estimate methane emissions using this approach, while also examining how changes in common production practices can affect overall emissions in the US. Our results indicated US rice cultivation produced between 0.32 and 0.45 Tg CH4 annually, which were approximately 7% and 42% lower on average compared to Food and Agriculture Organization of the UN (FAO) and US Environmental Protection Agency (EPA) inventories, respectively. Our estimates were 63% greater on average compared to similar methods that lack regional context. Introducing aeration events into irrigation resulted in the greatest methane reductions across both regions. When accounting for differences between baseline and reduction scenarios, the US MdS typically had higher mitigation potential compared to Cal. The differences in cumulative mitigation potential across the 2008-2020 period were likely driven by lower production area clay content for the US MdS compared to Cal. The added spatial representation in the Tier 2 approach is useful in surveying how impactful methane-reducing practices might be within and across regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据