4.7 Article

Treating waste with waste: Adsorption of anionic dyes in wastewater with surfactant-modified phosphogypsum

期刊

ENVIRONMENTAL RESEARCH
卷 237, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.116963

关键词

Phosphogypsum; Surfactant modification; Adsorption; Anionic organic dye; Regeneration

向作者/读者索取更多资源

Phosphogypsum (PG) was used as an adsorbent for dyes in wastewater, and surfactant-modified phosphogypsum (ODBAC@PG) with high adsorption capability for anionic dyes was prepared. The adsorption process followed the pseudo-second-order kinetic model and Langmuir adsorption isotherm. MeB and IC showed antagonistic effects on each other in the binary adsorption system, and ODBAC@PG exhibited high reusability. The adsorption mechanism involved electrostatic interaction, hydrogen bond, and hydrophobic interaction.
Phosphogypsum (PG) is a solid waste generated during the wet process of phosphoric acid production. The environmental-friendly disposal and recycling of PG is vital in the field of environmental solid waste treatment. In this study, PG is used for adsorbent of dyes in wastewater to achieve the goal of recycling waste with waste. Surfactant-modified phosphogypsum (ODBAC@PG) was prepared using octadecyl dimethyl benzyl ammonium chloride (ODBAC) as modifier. ODBAC@PG exhibits high adsorption capability for anionic dyes (methyl blue (MeB) and indocyanine carmine (IC)). The pseudo-second-order kinetic model fits the kinetic experimental data for the adsorption of two organic anionic dyes. Langmuir adsorption isotherm fits the adsorption characteristics of MeB and IC on ODBAC@PG, exhibiting a monolayer adsorption pattern. Thermodynamic parameters indicate the spontaneous and exothermic properties of MeB and IC on ODBAC@PG. MeB and IC have antagonistic effects on each other in binary adsorption system. High adsorption capacity after six cycles of experiments demonstrates the high reusability of ODBAC@PG. The nature for the adsorption includes electrostatic interaction, hydrogen bond and hydrophobic interaction. Using ODBAC@PG for dyes wastewater treatment can accomplish the goal of treating waste with waste and turning waste into treasure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据