4.7 Article

Effects of zinc ion concentrations on the performance of SBR treating livestock wastewater and analysis of microbial community

期刊

ENVIRONMENTAL RESEARCH
卷 236, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.116787

关键词

Zinc ion; Livestock wastewater; Biological denitrification; Microbial community structure

向作者/读者索取更多资源

Zinc ion has significant effects on the physicochemical properties and microbial distribution of activated sludge, which are crucial for nitrogen removal performance. This study investigated the impact of zinc ion on livestock wastewater treatment in a sequencing batch reactor (SBR). The results showed that low concentrations of zinc ion could enhance nitrogen removal, but higher concentrations deteriorated the total nitrogen removal performance.
Zinc ion (Zn2+) is a frequently occurring heavy metal in livestock wastewater. The effects of Zn2+ on the physicochemical properties and the microbial distribution of activated sludge are essential to controlling ni-trogen removal performance. Nevertheless, there are raw studies on the effects of Zn2+ on nitrogen removal. This study investigated the effect of Zn2+ on the treatment performance of livestock wastewater in a sequencing batch reactor (SBR). The results indicated the low Zn2+ concentrations could improve nitrogen removal performance. However, as the Zn2+ concentration increased, the total nitrogen (TN) removal performance of the reactor gradually deteriorated. When the Zn2+ concentration was 90.00 mg/L, the TN removal efficiency was the lowest, only 2.40%. The contents of the Extracellular polymeric substance (EPS) presented a trend of first increasing and then decreasing with the increase of Zn2+ concentration, and the main reason was the decrease of protein-like and tryptophan-like. The 16SrRNA analysis indicated that Zn2+ within a specific concentration could increase the operational taxonomic units (OTUs) number, microbial richness, and diversity of microorganisms in the SBR. However, with Zn2+ concentration exceeding 10.00 mg/L, the relative abundance of denitrification functional bacteria (Dechloromonas, Nitrospira, and Thauera) decreased.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据