4.7 Article

The role of O3 exposure and physical activity status on redox state, inflammation, and pulmonary toxicity of young men: A cross-sectional study

期刊

ENVIRONMENTAL RESEARCH
卷 231, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.116020

关键词

Air pollution; Traffic -related air pollution; Inflammation; Redox status

向作者/读者索取更多资源

Exposure to traffic-related air pollutants, such as NO2 and O3, can have detrimental health effects and is a major global public health issue. Exercising in polluted environments may be harmful to health and impede exercise training adaptations. This study aimed to investigate the effects of physical activity and O3 exposure on redox status, inflammatory markers, stress response, and pulmonary toxicity in young, healthy individuals. The results showed that physical activity was associated with higher O3 exposure, but not with age or markers of body composition. Individuals with high physical fitness and lower O3 exposure had better antioxidant defense, lower inflammation, and reduced pulmonary toxicity.
The exposure to traffic-related air pollutants, such as NO2 and O3, are associated with detrimental health effects, becoming one of the greatest public health issues worldwide. Exercising in polluted environments could result in harmful outcomes for health and may blunt the physiological adaptations of exercise training. This study aimed to investigate the influence of physical activity and O3 exposure on redox status, an inflammatory marker, response to stress, and pulmonary toxicity of healthy young individuals. We performed a cross-sectional study with 100 individuals that, based on their exposure to O3 and physical fitness (PF) level, were distributed in four groups: Low PF + Low O3; Low PF + High O3; High PF + Low O3; High PF + High O3. We evaluated personal exposure to NO2 and O3, physical activity level, variables of oxidative stress (SOD, ROS, CAT, GSH, TBARS), pulmonary toxicity (CC16), and inflammatory mediators (IL-1 beta, IL-4, IL-6, IL-10, TNF-alpha, HSP70). Spearman correlation test to check the association among the variables was used and to compare groups we used one-way ANOVA followed by Bonferroni's post hoc and Kruskal Wallis test followed by Dunn's post hoc. O3 levels correlated with physical activity (r = 0.25; p = 0.01) but not with age or markers of body composition (p > 0.05). The individuals with high physical fitness that were less exposed to O3 presented higher CAT activity (p < 0.001), lower TBARS (p < 0.01) and IL-1 beta concentrations (p < 0.01), higher IL-6 (p < 0.05) and IL-10 concentrations (p < 0.05), lower IL-6:1L-10 ratio (p < 0.05), lower CC16 levels (p < 0.05), and higher HSP70 concentration (p < 0.05). Physical activity could result in higher exposure to O3 that could partially blunt some exercise adaptations, while high physical fitness improved the antioxidant defense system, systemic inflammatory mediators, and pulmonary toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据