4.7 Article

Synergetic effect on fouling alleviating of membrane distillation in urine resource recovery by thermally activated peroxydisulfate pretreatment

期刊

ENVIRONMENTAL RESEARCH
卷 237, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.117013

关键词

Human urine; Membrane distillation; Resource recovery; Membrane fouling alleviation; Sanitation

向作者/读者索取更多资源

This study developed a combined system (TAP-MD) by integrating thermally activated peroxydisulfate (TAP) and MD process to inhibit membrane fouling and improve separation efficiency. The mechanism of membrane fouling alleviation by TAP-MD system was systematically studied and revealed the inorganic and organic foulants in urine that caused membrane fouling.
Given that the spontaneous precipitation of minerals caused by urea hydrolysis and abundant organic compounds, membrane fouling became a major obstacle for urine recovery by membrane distillation (MD). Herein, this study developed a combined system (TAP-MD) by integrating thermally activated peroxydisulfate (TAP) and MD process to inhibit membrane fouling and improve separation efficiency. Based on the TAP-MD system, the separation performance was improved significantly, improving nutrient recovery efficiency and quality of reclaimed water. More than 80% of water could be recovered from urine, and about 94.13% of total ammonia nitrogen (TAN), 99.02% of total nitrogen (TN), 100% of total phosphate (TP), and 100% of K+ were rejected. The mechanism for alleviating urine-induced fouling was systematically and intensively studied. With TAP pre-treatment, the TAN concentration of pretreated urine was kept at a low level steadily and the pH was at neutral or weakly acidic. Hence, inorganic scaling represented by carbonate and phosphate precipitates were significantly inhibited by creating unfavorable solvent environment for crystallization with TAP pretreatment. Additionally, aromatic proteins were found as the main organic foulants. According to the secondary structure of protein, the proteins were degraded by the cleavage of peptide bonds by TAP pretreatment. Meanwhile, the hydrophilicity of protein increased, which reduced the hydrophobic interaction of protein and membrane surface and thus alleviated protein-induced membrane fouling. This study revealed the inorganic and organic foulants in urine that caused membrane fouling and demonstrated the mechanism of membrane fouling alleviation by TAP -MD system. The experimental results will be instrumental in better understanding the mechanisms of membrane fouling induced by urine and optimize MD process for resource recovery from urine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据