4.7 Article

Efficacy and mechanisms of d-MnO2 modified biochar with enhanced porous structure for uranium(VI) separation from wastewater

期刊

ENVIRONMENTAL POLLUTION
卷 335, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2023.122262

关键词

Biowaste utilization; Uranium removal; d-MnO2; Synthetic wastewater; Actual radioactive wastewater

向作者/读者索取更多资源

In this study, a composite material (M-BC) based on banyan tree aerial roots biochar modified by d-MnO2 was designed to separate U(VI) from wastewater. The results showed that M-BC had a higher separation capacity compared to BC. The study also revealed the adsorption mechanisms of U(VI) by M-BC.
Even though uranium (U) is considered to be an essential strategic resource with vital significance to nuclear power development and climate change mitigation, U exposure to human and ecological environment has received growing concerns due to its both highly chemically toxic and radioactively hazardous property. In this study, a composite (M-BC) based on Ficus macrocarpa (banyan tree) aerial roots biochar (BC) modified by d-MnO2 was designed to separate U(VI) from synthetic wastewater. The results showed that the separation capacity of M-BC was 61.53 mg/g under the solid - liquid ratio of 1 g/L, which was significantly higher than that of BC (12.39 mg/g). The separation behavior of U(VI) both by BC and M-BC fitted well with Freundlich isothermal models, indicating multilayer adsorption occurring on heterogeneous surfaces. The reaction process was consistent with the pseudo-second-order kinetic model and the main rate-limiting step was particle diffusion process. It is worthy to note that the removal of U(VI) by M-BC was maintained at 94.56% even after five cycles, indicating excellent reusability and promising application potential. Multiple characterization techniques (e.g. Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET) and X-ray Photoelectron Spectroscopy (XPS)) uncovered that U (VI) complexation with oxygen-containing functional groups (e.g. O-C=O and Mn-O) and cation exchange with protonated =MnOH were the dominant mechanisms for U(VI) removal. Application in real uranium wastewater treatment showed that 96% removal of U was achieved by M-BC and more than 92% of co-existing (potentially) toxic metals such as Tl, Co, Pb, Cu and Zn were simultaneously removed. The work verified a feasible candidate of banyan tree aerial roots biowaste based d-MnO2-modified porous BC composites for efficient separation of U (VI) from uranium wastewater, which are beneficial to help address the dilemma between sustainability of nuclear power and subsequent hazard elimination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据