4.7 Article

Development of a field-deployable analytical workflow for determining current status and indicative human health risks at a historic dl-POPs hotspot

期刊

ENVIRONMENTAL POLLUTION
卷 334, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2023.122161

关键词

-

向作者/读者索取更多资源

This study introduces an integrated workflow for evaluating environmental and health risks of dl-POPs at industrial hotspot regions. By developing validated and user-friendly analytical strategies, routine monitoring of dl-POPs can be conducted effectively, especially in developing countries. The study validates a gas chromatography triple quadrupole mass spectrometer based analytical workflow as a substitute for conventional magnetic sector high resolution mass spectrometer technique and demonstrates its utility for predicting enviro-food-health nexus by analyzing fish and sediment samples from a POPs hotspot in India. The study highlights the importance of periodic surveillance of dl-POPs to safeguard human health and the environment.
This paper introduces an integrated workflow that effectively evaluates environmental and health risks of dioxin-like Persistent Organic Pollutants (dl-POPs) at industrial hotspot regions. The developments of validated, cost effective and user-friendly analytical strategies which can be field deployable are quintessential for routine monitoring of dl-POPs, particularly in developing countries. This study addresses the lacunae by enabling an exclusive gas chromatography triple quadrupole mass spectrometer based analytical workflow substituting conventional magnetic sector high resolution mass spectrometer technique and validated the methodology as per the European Union regulation 644/2017. The viable monitoring utility of the methodology for predicting enviro-food-health nexus was field-tested by analyzing fish and sediment samples from the Eloor-Edayar industrial belt, a solitary POPs hotspot in India. The profiles of congeners indicate that dl-POPs were formed through precursor pathways, suggesting the potential release of chlorinated precursor species from surrounding industrial area as the root cause. Fish samples from hotspots were observed to have 8 times higher levels of polychlorinated dibenzo-p-dioxin/furans (PCDD/Fs) and 30 times higher levels of polychlorinated biphenyls (PCBs) than the control sites. A strong statistically significant (p < 0.05) positive correlation was observed between dl-POPs levels in fish and sediment samples at the study site and the Biota sediment accumulation factors for PCDD/Fs and dl-PCBs ranged from 0.019 to 0.092 and 0.004 to 0.671 respectively. The estimated weekly intake from fish consumption in the study region was observed to be 3 to 24 times higher than the maximum levels set by the European food safety authority (2 pgTEQ kg � 1bwweek- 1). Hence, the periodic surveillance of dl-POPs employing user friendly/validated confirmatory tools stands highly imperative to safeguard human health and environment. Keywords: Dioxin and PCBs, GC-MS/MS, POPs Hotspot, Biota-sediment accumulation factor, Correlation analysis, Health risk assessment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据