4.7 Article

Characteristics of secondary inorganic aerosols and contributions to PM2.5 pollution based on machine learning approach in Shandong Province

期刊

ENVIRONMENTAL POLLUTION
卷 337, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2023.122612

关键词

PM2.5; Water-soluble ions; Secondary formation; Machine learning; SHAP

向作者/读者索取更多资源

Primary emissions of pollutants in China have decreased, but controlling secondary aerosol pollution remains a challenge. This study examined the characteristics of secondary nitrate and sulfate conversion in several cities and used interpretable attribution techniques to determine their contributions to PM2.5. The results showed a significant relationship between nitrogen oxidation rate and O-3 concentration, and higher humidity promoted sulfur oxidation. Jinan had more intense secondary conversion and pollution events were primarily caused by secondary formation and vehicle emissions. Machine learning and interpretable attribution techniques show potential for addressing environmental concerns.
Primary emissions of particulate matter and gaseous pollutants, such as SO2 and NOx have decreased in China following the implementation of a series of policies by the Chinese government to address air pollution. However, controlling secondary inorganic aerosol pollution requires attention. This study examined the characteristics of the secondary conversion of nitrate (NO3-) and sulfate (SO42-) in three coastal cities of Shandong Province, namely Binzhou (BZ), Dongying (DY), and Weifang (WF), and an inland city, Jinan (JN), during December 2021. Furthermore, the Shapley Additive Explanation (SHAP), an interpretable attribution technique, was adopted to accurately calculate the contributions of secondary formations to PM2.5. The nitrogen oxidation rate exhibited a significant dependence on the concentration of O-3. High humidity facilitates sulfur oxidation. Compared to BZ, DY, and WF, the secondary conversion of NO3- and SO42- was more intense in JN. The light-gradient boosting model outperformed the random forest and extreme-gradient boosting models, achieving a mean R-2 value of 0.92. PM2.5 pollution events in BZ, DY, and WF were primarily attributable to biomass burning, whereas pollution in Jinan was contributed by the secondary formation of NO3- and vehicle emissions. Machine learning and the SHAP interpretable attribution technique offer a precise analysis of the causes of air pollution, showing high potential for addressing environmental concerns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据