4.6 Article

Interlaboratory comparison of testing hydraulic, elastic, and failure properties in compression: lessons learned

期刊

ENVIRONMENTAL EARTH SCIENCES
卷 82, 期 21, 页码 -

出版社

SPRINGER
DOI: 10.1007/s12665-023-11173-x

关键词

Static Young's modulus; Rock strength; Permeability

向作者/读者索取更多资源

This study compares the experimental determination of mechanical and hydraulic properties of different rock samples in various laboratories. The results show that there is agreement among the laboratories in terms of compressive strength but differences in stress-strain relations and post-failure behavior. The determination of hydraulic permeability also yields some differences between the methods used.
Many geoscientific problems require us to exploit synergies of experimental and numerical approaches, which in turn lead to questions regarding the significance of experimental details for validation of numerical codes. We report results of an interlaboratory comparison regarding experimental determination of mechanical and hydraulic properties of samples from five rock types, three sandstone varieties with porosities ranging from 5% to 20%, a marble, and a granite. The objective of this study was to build confidence in the participating laboratories' testing approaches and to establish tractable standards for several physical properties of rocks. We addressed the issue of sample-to-sample variability by investigating the variability of basic physical properties of samples of a particular rock type and by performing repeat tests. Compressive strength of the different rock types spans an order of magnitude and shows close agreement between the laboratories. However, differences among stress-strain relations indicate that the external measurement of axial displacement and the determination of system stiffness require special attention, apparently more so than the external load measurement. Furthermore, post-failure behavior seems to exhibit some machine-dependence. The different methods used for the determination of hydraulic permeability, covering six orders of magnitude for the sample suite, yield differences in absolute values and pressure dependence for some rocks but not for others. The origin of the differences in permeability, in no case exceeding an order of magnitude, correlate with the compressive strength and potentially reflect a convolution of end plug-sample interaction, sample-to-sample variability, heterogeneity on sample scale, and/or anisotropy, the last two aspects are notably not accounted for by the applied evaluation procedures. Our study provides an extensive data set apt for benchmarking considerations, be it regarding new laboratory equipment or numerical modeling approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据