4.7 Article

pH-responsive/sustained release nitrogen fertilizer hydrogel improves yield, nitrogen metabolism, and nitrogen use efficiency of rice under alternative wetting and moderate drying irrigation

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2023.105376

关键词

Antioxidant enzymes; Irrigation regime; Morpho-physio-biochemical traits; Stimuli-responsive fertilizer; Nitrogen uptake; Oryza sativa L

向作者/读者索取更多资源

In this study, the use of pH-responsive nitrogen fertilizer (pH-RNF) was found to improve rice yield and nitrogen use efficiency under water-saving irrigation conditions. The combined treatment of AWMD x pH-RNF promoted root and shoot morpho-physio-biochemical traits, ensuring optimal overall plant growth, high yield, and efficient nitrogen utilization for sustainable rice production.
Rice is challenged by inefficient nitrogen (N) fertilizer and water inputs. However, pH-responsive N fertilizers (pH-RNFs) could improve rice yield and N use-efficiency under water-saving irrigation. Thus, a pot experiment was conducted without N fertilizer (0 mg N/kg, ZNF), with 175 mg/kg mineral N fertilizer (MNF), and with 175 mg/kg pH-responsive N fertilizer (pH-RNF) by using three water regimes: alternate wetting/critical drying (AWCD, 70-60% saturation, 5 cm flooded), alternate wetting/severe drying (AWSD, 80-70% saturation, 5 cm flooded), and alternate wetting/minor drying (AWMD, 100-90% saturation, 5 cm flooded). Under the same alternate wetting/drying regime, the growth traits, yield, and N utilization of rice were found to be higher in pH-RNF than in MNF. The growth attributes and yield and the N efficient use of rice were greater in the AWMD regime than in the AWCD regime under the same N fertilization. The surface area, diameter, length density, oxidation ability, reductase activity, and peroxidase activity of roots were greater in AWMD x pH-RNF than in AWCD x ZNF, because the former treatment increased the total N contents in the rhizosphere, whereas the latter reduced them. In the photosynthesis process, leaf nitrate reductase (41.7 mu g/[g.h]) and leaf glutamine synthetase (1158.1 mu mol/[g.h]) were larger in AWMD x pH-RNF than in AWCD x ZNF at 22.7 mu g/(g.h) and 501.2 mu mol/(g. h), respectively, resulting in the amelioration of oxidative leaf cell damage, as revealed by reduced radical oxidative sequence release and lower malonaldehyde level (7.2 mu mol/g). Meanwhile, the optimum N nutrition enhanced the leaf mesophyll structure, cell cycle progression, and the development traits of the stem and panicle under the combination AWMD x pH-RNF. Panicle glutamine synthetase (24.35 mu mol/[g.h]) and catalase activity (13.86 mu g/min) were larger in AWMD x pH-RNF than in AWCD x ZNF at 14.77 mu mol/[g.h] and 7.59 mu g/min, respectively. The combination AWMD x pH-RNF resulted in the highest N crop removal efficiency (CREN, 49.5%), N agronomic use efficiency (AUEN, 7.97 g/g), N partial factor productivity (PFPN, 18.66 g/g), and N harvest index (HIN, 67.83%). However, the minimum values of CREN (10.3%), AUEN (1.49 g/g), PFPN (7.59 g/g), and HIN (43.48%) were observed in AWCD x MNF. This study suggests that AWMD x pH-RNF could promote root and shoot morpho-physio-biochemical traits, guaranteeing optimal overall plant growth with high yield and adequate N acquisition, and efficient N utilization for sustainable rice production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据