4.6 Article

Multiparameter Estimation with Two-Qubit Probes in Noisy Channels

期刊

ENTROPY
卷 25, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/e25081122

关键词

quantum metrology; collective measurements; entanglement; Cramer-Rao bound

向作者/读者索取更多资源

This study compares the performance of single- and two-qubit probes for estimating multiple phase rotations under different noisy channels, showing that two-qubit probes exhibit enhanced parameter estimation capabilities. Entanglement is required in both the state preparation and state measurement stages to reach the ultimate precision limits allowed by quantum mechanics.
This work compares the performance of single- and two-qubit probes for estimating several phase rotations simultaneously under the action of different noisy channels. We compute the quantum limits for this simultaneous estimation using collective and individual measurements by evaluating the Holevo and Nagaoka-Hayashi Cramer-Rao bounds, respectively. Several quantum noise channels are considered, namely the decohering channel, the amplitude damping channel, and the phase damping channel. For each channel, we find the optimal single- and two-qubit probes. Where possible we demonstrate an explicit measurement strategy that saturates the appropriate bound and we investigate how closely the Holevo bound can be approached through collective measurements on multiple copies of the same probe. We find that under the action of the considered channels, two-qubit probes show enhanced parameter estimation capabilities over single-qubit probes for almost all non-identity channels, i.e., the achievable precision with a single-qubit probe degrades faster with increasing exposure to the noisy environment than that of the two-qubit probe. However, in sufficiently noisy channels, we show that it is possible for single-qubit probes to outperform maximally entangled two-qubit probes. This work shows that, in order to reach the ultimate precision limits allowed by quantum mechanics, entanglement is required in both the state preparation and state measurement stages. It is hoped the tutorial-esque nature of this paper will make it easily accessible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据