4.7 Article

A novel multi-level data fusion and anomaly detection approach for infrastructure damage identification and localisation

期刊

ENGINEERING STRUCTURES
卷 292, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.engstruct.2023.116473

关键词

Data fusion; Machine learning; Anomaly detection; Damage identification; Damage localisation; Infrastructure health monitoring; Smart infrastructure

向作者/读者索取更多资源

This paper introduces a new framework for damage identification and localisation using multi-level data fusion and anomaly detection techniques. The framework is demonstrated through case studies of a simply supported bridge and a continuous bridge. Anomaly detection using a deep convolutional autoencoder is performed to identify single and multiple damages on the bridge. The proposed approach is independent of vehicle mass and speed, and applicable to different types of bridges with minor modifications. The accuracy of damage identification and localisation is shown to be high for both bridge types.
In this paper, a new damage identification and localisation framework utilising multi-level data fusion and anomaly detection techniques is introduced. The performance of the framework is presented via case studies of a simply supported bridge and a continuous bridge, whose data were numerically generated through a surrogate model. Accelerations, deflections and bending moments obtained at multiple sensor locations when the bridge was subjected to a moving vehicle were used as the input. A damage-sensitive feature was established via coupling principal component analysis and Mahalanobis distance, allowing for initial data dimensionality reduction and information integration. Anomaly detection using a deep convolutional autoencoder was performed to identify the presence of single and multiple damages on the bridge. It is demonstrated that the proposed approach is independent of the mass and speed of moving vehicles, and is applicable to different types of bridges (i.e. simply supported bridge and continuous bridge) with only minor modifications to the data augmentation/preparation processes. The accuracy of damage identification for the simply supported bridge is shown to be consistently greater than 93%, even for extremely small damage severity (e.g. 1% reduction in local stiffness), and multiple damages. While the damage identification accuracy for the continuous bridge is greater than 94.9% for the majority of the tested cases. The proposed damage localisation approach can accurately determine damage location(s) for both single and multiple damage cases. It is shown how the proposed framework can be adopted for early damage detection to enable reliable decision-making and maximise structural safety.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据