4.7 Article

Aging-aware optimal power management control and component sizing of a fuel cell hybrid electric vehicle powertrain

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 292, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2023.117330

关键词

Fuel cell hybrid electric vehicle; Hybrid Energy Storage System (HESS); Fuzzy logic control; Fuel cell and battery lifetime; Multi-objective optimization

向作者/读者索取更多资源

The study presents a comprehensive approach for optimizing the power distribution control and design of a Fuel Cell Hybrid Electric Vehicle (FCHEV) using a multi-objective evolutionary algorithm. The method aims to maximize the vehicle's driving range and the lifetimes of the fuel cell stack and battery while minimizing hydrogen fuel consumption and storage system size. The optimized FCHEV configuration achieved a driving range of 444 km and exhibited improved energy efficiency, driving autonomy, and power sources lifespan in real-world driving conditions.
The current study presents a comprehensive approach for optimizing the power distribution control and design of a Fuel Cell Hybrid Electric Vehicle (FCHEV) equipped with a Battery-Ultracapacitor Hybrid Energy Storage System (HESS) using a multi-objective evolutionary algorithm called interactive adaptive-weight genetic algorithm (i-AWGA). The method aims to maximize the vehicle's driving range and the lifetimes of the fuel cell stack and battery while minimizing hydrogen fuel consumption and HESS size. The energy management strategy involves fuzzy logic controllers to distribute the power demand between the fuel cell and HESS and between the battery and ultracapacitor pack. Under the combined standardized cycle in which the optimization was developed, the optimized FCHEV configuration achieved a driving range of 444 km, hydrogen consumption of 0.9009 kg/100 km. Furthermore, the optimal configuration demonstrated robustness in real-world driving conditions, exhibiting improved energy efficiency, driving autonomy, and power sources lifespan. A cost-benefit analysis was also carried out, in which the optimized configuration was evaluated in terms of cost of ownership, achieving 31.28 US$/km, which means the substantial reduction of up to 63.59% in the invested cost-to-autonomy ratio as compared against other electrified vehicle powertrain topologies. Overall, this study offers a promising approach for designing efficient, cost-effective, and environmentally friendly FCHEVs with improved performance and durability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据