4.7 Article

State of health estimation of the LiFePO4 power battery based on the forgetting factor recursive Total Least Squares and the temperature correction

期刊

ENERGY
卷 282, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2023.128437

关键词

LiFePO 4 power battery; Forgetting factor recursive total least squares; Temperature correction; Capacity convergence coefficient; Arrhenius equation

向作者/读者索取更多资源

This paper proposes a SOH estimation method for lithium-ion power batteries, which utilizes the FFRTLS and temperature correction. The method effectively addresses SOC estimation errors and terminal current measurement noise, while also correcting the influence of ambient temperature. Experimental results demonstrate the effectiveness of the proposed method, with evaluation indexes showing high accuracy of the SOH estimation results.
The decline of the lithium-ion power battery's State of Health (SOH) with usage significantly impacts other state estimation results, such as State of Charge (SOC). Hence, accurate estimation of the lithium-ion power battery's SOH holds vital importance in the battery management system. This paper proposes a SOH estimation method for the lithium-ion power battery, utilizing the Forgetting Factor Recursive Total Least Squares (FFRTLS) and incorporating the temperature correction. The FFRTLS effectively addresses the SOC estimation errors and the terminal current measurement noise simultaneously. The temperature correction method, based on the Arrhenius equation, corrects the influence of the ambient temperature during the SOH estimation process, ensuring that the ambient temperature does not affect the accuracy of the SOH estimation results. Additionally, the capacity convergence coefficient enhances the reliability of the SOH estimation results by preventing abrupt changes of the maximum available capacity. Experimental results on a LiFePO4 power battery under diverse working conditions and varying ambient temperatures, validate the effectiveness of the proposed method. The evaluation indexes, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Maximum Absolute Error (Max-AE), demonstrate the high accuracy of the SOH estimation results, with all indexes below 0.21%, 0.25% and 0.35% respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据