4.7 Article

Effect of functionalization on electrospun PVDF nanohybrid for piezoelectric energy harvesting applications

期刊

ENERGY
卷 275, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2023.127492

关键词

Carbon nanofiber; Functionalization; Electrospinning; Energy harvesting; Modelling

向作者/读者索取更多资源

Carbon nanofibers (CNF) have been functionalized to enhance their surface property and applied in energy harvesting applications. Electrospun composite fibers with electroactive filler show improved properties compared to the pristine poly(vinylidene fluoride) (PVDF), and computational studies analyze the role of structural conformations and the effect of the filler. The device developed from the electrospun scaffold demonstrates high efficiency in generating output voltage and current through different modes, attributed to the mechanistic pathway of charge generation and transformation of non-piezo to piezo-active parts.
Carbon nanofibers (CNF) have gained much attention in the field of energy and preparation of nanofibers with polymer, a recent method to increase its mode of applications. Functionalization of CNF has been done to enhance its surface property for better dispersion and interaction with polymer matrix and ultimately applied for energy harvesting applications. Electrospun composite fibers prepared through the electrospinning process shows better morphological, structural and thermal properties on incorporation of the electroactive filler to the pristine poly(vinylidene fluoride) (PVDF). Functionalization of the filler leads to thinning of the fiber with significantly enhanced piezo phase generation as compared to the neat PVDF. The rise in piezo-active phases (85% for PVDF-functionalized CNF hybrid) is clearly demonstrated from the structural and thermal techniques which confirm the materials potential as efficient piezoelectrics. The role of the structural conformations and the effect of the filler are analysed using the computational studies. The change in properties of the material in presence of electric field and electroactive filler is well demonstrated using the theoretical analysis. The device developed from the electrospun scaffold produces maximum (peak-to-peak) output voltage of 44 V, maximum current of 1.3 & mu;A and power of 57.2 & mu;W through finger tapping mode which is considerably higher as compared to the pristine PVDF scaffold. The device can produce good output from other modes like bending, pinning and foot tapping which may be due to the mechanistic pathway of the charge generation due to the external pressure which leads to high transformation of the non-piezo part to piezo-active part that increases the efficiency of the device.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据