4.7 Article

A global-local context embedding learning based sequence-free framework for state of health estimation of lithium-ion battery

期刊

ENERGY
卷 282, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2023.128306

关键词

Lithium-ion battery; State of health; Neural network

向作者/读者索取更多资源

This paper proposes a novel sequence-free framework for estimating the state of health (SOH) of lithium-ion batteries. By introducing a global-local context embedding module, both global and local-range information can be learned to establish the mapping relationship between battery charging/discharging curves and battery SOH.
Accurate estimation of the state of health (SOH) of lithium-ion batteries holds significant importance in guaranteeing the stable and secure functioning of electric vehicles. However, existing neural network-based methods suffer from limitations in capturing long-term serial relationships and extracting degenerate features. In light of these challenges, we propose a novel sequence-free framework for performing the SOH estimation task. Technically, a global-local context embedding module is proposed to learn both global-and local-range information context by two convolutional streams with different depths. With this module, a discriminatory feature learning can be guided. By integrating it into the convolution neural network, a novel time series prediction network, called improved convolution neural network (ICNN) is presented, which can effectively establish the mapping relationship between battery charging/discharging curves and battery SOH. Through rigorous experimentation on the CACLE dataset and NASA dataset, we demonstrate the efficacy of our proposed method, achieving mean absolute errors (MAEs) of 0.54% and 1.20% respectively. Our findings highlight the superiority of the proposed method compared to commonly used neural network methods in the domain of battery SOH estimation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据