4.7 Article

Multi-objective optimization of multi-channel cold plate under intermittent pulsating flow by RSM and NSGA-II for thermal management of electric vehicle lithium-ion battery pack

期刊

ENERGY
卷 283, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2023.129085

关键词

Intermittent pulsating flow; Multi -channel cold plate; Multi -objective optimization; Response surface methodology; Non -dominated sorting genetic algorithm II

向作者/读者索取更多资源

In this study, a multi-objective optimization of a multi-channel cold plate under intermittent pulsating flow is conducted using Response Surface Methodology (RSM) and Non-dominated Sorting Genetic Algorithm II (NSGA-II). The trade-off between the average heat transfer coefficient and energy consumption is achieved. Numerical investigations and regression models are employed to determine the optimal design variables and objective function values.
The heat transfer and energy consumption characteristics are the most important performance parameters of cold plate for thermal management of electric vehicle lithium-ion battery pack. In this work, in order to address the issue about multi-objective optimization of multi-channel cold plate under intermittent pulsating flow, RSM (Response Surface Methodology) and Non-dominated Sorting Genetic Algorithm II (NSGA-II) is combined to make a trade-off between the average heat transfer coefficient and energy consumption of multi-channel cold plate under intermittent pulsating flow. Box-Behnken design is used to arrange a series of numerical investigations using the steady flow velocity vin, pulsation amplitude A, and pulsation frequency e as design variables and the average heat transfer coefficient have and energy consumption W as objective functions. Regression models are created in the form of quadratic polynomials, and the significance of each term in the model is determined by analysis of variance (ANOVA). Results show that the linear term of vin has the greatest effect on have and W. According to the Pareto optimal solution obtained from NSGA-II, the optimal objective functions are have = 394.7012 W m- 2 degrees C- 1, W = 0.1086 J, and the corresponding design variables are vin = 0.02392 m/s, A = 0.1778 and e = 3.1846 Hz.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据