4.7 Article

Influence of shale bedding on development of microscale pores and fractures

期刊

ENERGY
卷 282, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2023.128844

关键词

Shale oil reservoir; Bedding development; Pore-fracture spatial distribution; SEM scanning; Statistical analysis

向作者/读者索取更多资源

This paper examines the development characteristics of shale pores and fractures, revealing that the pore space varies widely in size, primarily in the nanoscale range, and the proportion of organic pore area is much higher than that of mineral pore area. The study also finds that shale porosity has strong heterogeneity, with minerals and maturity playing important roles in throat diameter, geological compaction and tectonism affecting the tortuosity of shale reservoir pores, and pore connectivity primarily influencing shale wettability.
The characteristics of bedding development have an important impact on the spatial distribution of shale pores and fractures. However, there is a lack of systematic study on the pore and fracture structure of bedding development characteristics. In this paper, the geological control mode of shale type on the development characteristics of pores and fractures is revealed; pore-throat models under different shale lithology conditions are constructed; the control mechanism of bedding development characteristics on the spatial distribution pattern of pores and fractures is clarified. Results show that: (a) The pore space size varies widely from nanoscale to micron-scale or even millimeter scale, and is mainly concentrated in the nanoscale range. (b) For shale samples No. 1-7-1 No. 21-7-1, although the proportion of organic matter and mineral area in different samples varies greatly, the difference between the proportion of organic pore area and the proportion of mineral pore area is not significant, and the proportion of organic pore area is much higher than that of mineral pore area. (c) The pore diameter of shale has strong heterogeneity; minerals have an important impact on throat diameter; maturity has an important impact on throat length; geological compaction and tectonism will have an impact on the tortuosity of shale reservoir pores; the controlling effect of pore connectivity on shale wettability is mainly reflected in the connectivity of hydrophilic and lipophilic pores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据