4.7 Article

Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials

期刊

ENERGY
卷 282, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2023.128378

关键词

Metal -organic frameworks; Transition metal oxides; Anode materials; Lithium -ion batteries; Modification strategies; Electrochemical performance

向作者/读者索取更多资源

This review presents an overview of the application and recent progress of metal-organic frameworks (MOFs) and their derived transition metal oxides (TMOs) as anode materials for lithium-ion batteries. It discusses their unique structure and morphological characteristics, controllable skeleton composition, electrochemical mechanisms, cyclic capacity enhancement phenomenon, challenges, and modification strategies to improve their electrochemical performance.
Lithium-ion batteries (LIBs) are widely used as energy storage technology in emerging markets such as electric vehicles. The development of anode materials that can replace graphite materials is a hotspot of current research. Metal-organic frameworks (MOFs), as a kind of important porous inorganic organic hybrid crystals, have been developed and used as anode materials for LIBs. MOFs can be used as precursors for transition metal oxides (TMOs) with nanostructures based on unique properties such as their unique structure and morphological characteristic, and controllable skeleton composition. In this review, the application and recent progress of MOFs and their derived TMOs in anode materials for LIBs are reviewed. Attention is also paid to their electrochemical mechanisms and the mechanism of the cyclic capacity enhancement phenomenon. Finally, the challenges of MOFs and their derived TMOs as LIBs anode materials are discussed, and modification strategies to improve their electrochemical performance are analyzed and summarized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据