4.7 Article

Performance improvement of microbial fuel cell using experimental investigation and fuzzy modelling

期刊

ENERGY
卷 286, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2023.129486

关键词

Microbial fuel cell; Modelling; Salp swarm optimization

向作者/读者索取更多资源

This study utilizes fuzzy modeling and optimization to enhance the performance of microbial fuel cells (MFCs). By simulating and analyzing experimental data sets, the ideal parameter values for increasing power density, COD elimination, and coulombic efficiency were determined. The results demonstrate that the fuzzy model and optimization methods can significantly improve the performance of MFCs.
The yield of a microbial fuel cell (MFC) is significantly influenced by the media composition, which mainly consists of carbon, nitrogen sources and aeration rate. This study uses fuzzy modelling and optimization to enhance the performance of MFC. First, a simulation of the microbial fuel cell model using three input parameters-glucose (g/L), yeast extract (g/L), and aeration (ml/min)-was performed using experimental data sets. Three output parameters-power density (W/m2), COD removal (%), and coulombic efficiency (%)-are used to assess the performance. Then, the ideal values for three input controlling parameters are found using the salp swarm optimizer (SSO) for simultaneously increasing power density, COD elimination, and coulombic efficiency. For the fuzzy model of the power density, the RMSE values for the training and testing data sets are 1.35 e-07 and 0.0424, respectively. The R-squared values for training and testing are 1.0 and 0.98, respectively. Low RMSE values and high R-squared proved the accuracy of fuzzy model. Then using, SSA, the coulombic efficiency climbed from 38 % to 40.33 %, and the COD removal went from 80 % to 81.71 %. Under this condition, the performance index increased from 118.525 to 122.532 by around 3.4 %.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据