4.5 Review

Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries

期刊

ENERGIES
卷 16, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/en16207142

关键词

lithium-ion battery; low temperature; charging; discharging; modeling; heating

向作者/读者索取更多资源

Lithium-ion batteries (LIBs) experience significant performance decrease at low temperatures, which poses great challenges for the application of electric vehicles in cold weather and the promotion of EVs in high-latitude regions. This review discusses the performance limitations, modeling, and heating methods for addressing the low-temperature challenge of LIBs. Future research directions and limitations are also outlined.
Lithium-ion batteries (LIBs) have the advantages of high energy/power densities, low self-discharge rate, and long cycle life, and thus are widely used in electric vehicles (EVs). However, at low temperatures, the peak power and available energy of LIBs drop sharply, with a high risk of lithium plating during charging. This poor performance significantly impacts the application of EVs in cold weather and dramatically limits the promotion of EVs in high-latitude regions. This challenge recently attracted much attention, especially investigating the performance decrease for LIBs at low temperatures, and exploring the solutions; however, limited reviews exist on this topic. Here, we thoroughly review the state-of-the-arts about battery performance decrease, modeling, and preheating, aiming to drive effective solutions for addressing the low-temperature challenge of LIBs. We outline the performance limitations of LIBs at low temperatures and quantify the significant changes in (dis)charging performance and resistance of LIBs at low temperatures. The various models considering low-temperature influencing factors are also tabulated and summarized, with the modeling improvement for describing low-temperature performance highlighted. Furthermore, we categorize the existing heating methods, and the metrics such as heating rate, energy consumption, and lifetime impact are highlighted to provide fundamental insights into the heating methods. Finally, the limits of current research on low-temperature LIBs are outlined, and an outlook on future research direction is provided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据