4.7 Article

Protective effects and mechanisms of N-acetylcysteine on indomethacin-induced intestinal injury in a porcine model

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2023.115173

关键词

N-acetylcysteine; Indomethacin; Intestines; Antioxidants; Anti-inflammatory; Arginine

向作者/读者索取更多资源

This study aimed to investigate the effect of N-acetylcysteine (NAC) on indomethacin (IDMT)-induced intestinal injury in a piglet model and explore the underlying molecular mechanisms. The results showed that NAC administration significantly increased the average daily gain of piglets, attenuated the intestine hyperemia, and restored normal jejunal morphology. NAC administration ameliorated intestinal injury in IDMT-challenged piglets by enhancing antioxidant and anti-inflammatory functions and modulating arginine metabolism in the small intestine.
This study aimed to investigate the effect of N-acetylcysteine (NAC) on indomethacin (IDMT)-induced intestinal injury in a piglet model and explore the underlying molecular mechanisms. Piglets were randomly divided into 3 treatment groups: (1) control group; (2) IDMT group; (3) NAC+IDMT group. The results showed that NAC administration significantly increased the average daily gain of piglets, attenuated the intestine hyperemia, and restored normal jejunal morphology. Further studies indicated that NAC administration significantly increased plasma citrulline concentration and jejunal villin expression, but decreased the content of proinflammatory cytokines in plasma and jejunum of IDMT-stimulated piglets. NAC administration selectively decreased the proportion of eosinophils but not neutrophils in plasma. Furthermore, NAC administration significantly increased the activities of superoxide dismutase and catalase in plasma but decreased the concentrations of hydrogen peroxide (plasma) and malondialdehyde (plasma and jejunum), as well as the activity of myeloperoxidase (jejunum) when comparing NAC+IDMT group with IDMT group. Gene Ontology analysis showed that the significantly enriched molecular function term was ubiquitin-like protein ligase binding for NAC+IDMT versus IDMT differentially regulated genes. In the biological process category, differentially regulated genes of NAC+IDMT versus IDMT were mainly enriched in immune-related terms. The major enrichments for differentially regulated proteins (DRPs) of NAC+IDMT versus IDMT were terms involved in lipid metabolism and immune response. KEGG pathway enrichment analysis showed that arginine biosynthesis was a significant enrichment term for the DRPs of NAC+IDMT versus IDMT. Further studies demonstrated that NAC administration up-regulated argininosuccinate synthase 1 mRNA expression and down-regulated arginase mRNA expression in the jejunum of IDMT-stimulated piglets. Moreover, the content of nitric oxide was restored to a normal level with the reduction of nitric oxide synthase activity. NAC administration ameliorated intestinal injury in IDMT-challenged piglets by enhancing antioxidant and anti-inflammatory functions and modulating arginine metabolism in the small intestine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据