4.6 Article

First-principles study on the upper pressure limit of diamond under multiaxial stress

期刊

DIAMOND AND RELATED MATERIALS
卷 138, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.diamond.2023.110232

关键词

Diamond; Upper pressure limit; First principle simulation; Mechanical strength; Phase transitions

向作者/读者索取更多资源

In this study, a method for predicting the upper pressure limit of diamond under multiaxial stress is developed based on first-principles calculations. The calculated results indicate that the upper pressure limit of diamond can reach up to 1.265 TPa, which is approximately 1.18-1.28 times higher than the current upper pressure limit under hydrostatic pressure.
In this study, we investigated the upper pressure limit of diamond. A method for predicting the upper pressure limit of diamonds under multiaxial stress is developed by introducing stress angles a based on first-principles calculations. The normal stresses of diamond in three mutually orthogonal orientations [111], [112], and [110] are set as a[111]tan(a) = a[112] = a[110]. The three most important characteristics, namely, the theoretical strength, maximum dynamic stability stress, and phase transition stress, are evaluated and analysed to further determine the upper pressure limit of diamond. The calculated results indicate that the upper pressure limit of diamond can reach up to 1.265 TPa in the [111] orientation under multiaxial compressions, which is approximately 1.25 times higher than that of our calculated phase transition stress (sigma[111] = 1008.3 GPa) and 1.18-1.28 times higher than that of the current upper pressure limit 990 (Phys. Rev. Lett. 108 (2012) 045704)-1075 GPa (Proc. Natl Acad. Sci. U. S. A. 103 (2006) 1204) at a hydrostatic pressure, which is a new record. This study provides a possible approach to obtain a high pressure limit by multiaxial compression, which will advance the progress of in-situ high-pressure anvil technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据