4.4 Review

Recent developments in targets for ischemic foot disease

期刊

出版社

WILEY
DOI: 10.1002/dmrr.3703

关键词

clinical trials; diabetes-related foot disease; ischaemia; mouse models; peripheral artery disease; ulcer

向作者/读者索取更多资源

Diabetes is a major risk factor for ischaemic foot disease, which can lead to severe complications such as tissue loss and amputation. Current treatment options focus on revascularisation, but there are limitations in both surgical eligibility and success rates. Recent research in animal models and clinical trials have identified potential novel medical targets for ischaemia, aiming to improve wound healing and enhance blood supply recovery. However, translating these findings to human patients remains challenging due to limitations in clinically relevant animal models. Promising results have been reported in small clinical trials with certain therapies, but further research and larger clinical trials are needed to determine their broader applicability.
Diabetes is a key risk factor for ischaemic foot disease, which causes pain, tissue loss, hospital admission, and major amputation. Currently, treatment focuses on revascularisation, but many patients are unsuitable for surgery and revascularisation is frequently unsuccessful. The authors describe recent research in animal models and clinical trials investigating novel medical targets for ischaemia, including theories about impaired wound healing, animal models for limb ischaemia and recent randomised controlled trials testing novel medical therapies. Novel targets identified in animal models included stimulating mobilisation of CD34+ progenitor cells through upregulating oncostatin M or microRNA-181, downregulating tumour necrosis factor superfamily member 14, or activating the Wingless pathway. Within the ischaemic limb vasculature, upregulation of apolipoprotein L domain containing 1, microRNA-130b or long noncoding RNA that enhances endothelial nitric oxide synthase expression promoted limb blood supply recovery, angiogenesis, and arteriogenesis. Similarly, administration of soluble guanylate cyclase stimulators riociguat or praliciguat or 3-ketoacyl-CoA thiolase inhibitor trimetazidine promoted blood flow recovery. Translating pre-clinical findings to patients has been challenging, mainly due to limitations in clinically translatable animal models of human disease. Promising results have been reported for administering plasmids encoding hepatocyte growth factor or intra-arterial injection of bone marrow derived cells in small clinical trials. It remains to be seen whether these high resource therapies can be developed to be widely applicable. In conclusion, an ever-expanding list of potential targets for medical revascularisation is being identified. It is hoped that through ongoing research and further larger clinical trials, these will translate into new broadly applicable therapies to improve outcomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据