4.6 Article

METTL16, an evolutionarily conserved m6A methyltransferase member, inhibits the antiviral immune response of miiuy croaker (Miichthys miiuy)

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dci.2023.104713

关键词

METTL16; Structure; Evolution; Immune response

向作者/读者索取更多资源

This study identified METTL16 in miiuy croaker and found that its expression was increased after poly(I:C) stimulation, suggesting its involvement in antiviral immunity. Functional experiments showed that mmiMETTL16 could inhibit immune response caused by viral stimulation. Overall, the study on mmiMETTL16 will contribute to understanding the role of METTL16 in the teleost immune system and the potential mechanisms of the m6A regulation network.
Methyltransferase like-16 (METTL16) is an m6A RNA methylation transferase that is known to methylate U6 snRNA and pre-mRNA of S-adenosylmethionine synthase but has been poorly studied in fish. In this study, METTL16 was identified in miiuy croaker (Miichthys miiuy). We first performed bioinformatics analysis of the miiuy croaker METTL16 (mmiMETTL16). MmiMETTL16 and other vertebrates METTL16 have a relatively conserved MTD structural domain and gene structure, suggesting that their methylase activity may also be conservative. In healthy miiuy croaker, mmiMETTL16 was commonly expressed in the tested tissues. Expression of mmiMETTL16 in kidney, liver, and spleen tissues was significantly increased after poly(I:C) stimulation. Consistently, mmiMETTL16 was sensitive to poly(I:C) stimulation in miiuy croaker kidney cell (MKC), suggesting that METTL16 might participate in antiviral immunity. For further functional experiments, immunofluorescence of mmiMETTL16 presents in the nucleus in kidney cells. In addition, the overexpression of mmiMETTL16 could significantly increase the overall m6A level of MKC cells, which shows that the function of METTL16 as methyltransferase is conservative in miiuy croaker. Last, mmiMETTL16 can inhibit the expression of TNF-alpha, IFN-1, Mx1, and ISG15, suggesting that mmiMETTL16 can suppress the immune response caused by viral stimulation. In summary, studies on mmiMETTL16 will contribute to future studies on the role of METTL16 and potential mechanisms of the m6A regulation network in the teleost immune system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据