4.6 Article

Black carp RNF5 inhibits STING/IFN signaling through promoting K48-linked ubiquitination and degradation of STING

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dci.2023.104712

关键词

Innate immunity; Black carp; Interferon; RNF5; STING

向作者/读者索取更多资源

The study finds that black carp RNF5 (bcRNF5) inhibits STING/IFN signaling by enhancing K48-linked ubiquitination and protease degradation of STING.
Ubiquitination is one of the important post-translational modifications (PTMs) of proteins that plays a vital role in regulating substrate degradation to ensure cellular homeostasis. Ring finger protein 5 (RNF5) is an essential E3 ubiquitin ligase for inhibiting STING-mediated interferon (IFN) signaling in mammals. Nevertheless, the function of RNF5 in STING/IFN pathway remains obscure in teleost. Here, we reported that over-expression of black carp RNF5 (bcRNF5) inhibited STING-mediated transcription activity of bcIFNa, DrIFN phi 1, NF-kappa B and ISRE promoters and antiviral activity against SVCV. Moreover, knockdown of bcRNF5 increased the expression of host genes, including bcIFNa, bcIFNb, bcIL beta, bcMX1 and bcViperin, and also enhanced the antiviral capability of host cells. Immunofluorescence (IF) and Co-immunoprecipitation (Co-IP) assay confirmed that bcRNF5 was mainly localized in the cytoplasm and interacted with bcSTING. The expression level of bcSTING protein was attenuated by co-expressed bcRNF5 and MG132 treatment rescued this attenuating effect, suggesting that bcRNF5-mediated bcSTING degradation was dependent on the proteasome pathway. Subsequent, Co-IP and immunoblot (IB) experiments identified that bcRNF5 triggered the K48-linked but not K63-linked ubiquitination of bcSTING. Altogether, above results conclude that RNF5 suppresses STING/IFN signaling by enhancing K48-linked ubiquitination and protease degradation of STING in black carp.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据